274P - AI/ML-BASED LUNG CANCER DETECTION AND CHARACTERIZATION FOR LUNG CANCER SCREENING: RESULTS FROM THE REALITY STUDY ON EARLY-STAGE LUNG CANCER

Authors: R. OSAROGIAGBON¹, A. VACHANI², C. GOTERA³, L. SEIJO⁴, G. BASTARRIKA⁴, E. OSTRIN⁵, J. DENNISON⁵, C. VOYTON⁶, P. BAUDOT⁶, E. GEREMIA⁶, P. SIOT⁶, V. LE⁶, RENOUST⁶, B. HUET⁶, V. BOURDES⁶

[1] Baptist Cancer Center, Memphis, TN, [2] Penn Medicine, Philadelphia, PA, [3] Hospital Universidad de Navarra, Madrid, Spain, [5] MD Anderson Cancer Center, Houston, TX, [6] Median Technologies, Valbonne, France.

BACKGROUND

radiological reading is entering clinical practice, potentially revolutionizing lesion characterization and early lung cancer detection. Tumor size and cancer stage at diagnosis are key determinants of survival: small, early-stage cancers are more responsive to treatment, with better prognoses. An AI/ML-Based assisted computer diagnostic algorithm detection and (CADe/CADx), was designed to assist the detection and characterization of suspicious lung nodules during lung cancer screening (LCS).

We present a subset of the pivotal REALITY Study results focusing on cancer stage and cell type.

METHODS

Retrospective cohort study of individuals meeting USPSTF LCS criteria at five academic centers in Europe and the USA.

LDCT exams analyzed with the CADe/CADx; output compared to radiologist consensus. Reference standard proven via histopathology or ≥12 months stability.

AI/ML-Based CADe/CADx developed so that suspicious nodules presented on the results report should receive additional follow-up.

CADe/CADx Workflow Cade/CADx Workflow Patient Localization & Segmentation Segmentation Nodule #1 Nodule Characterization (Malignancy Risk Score) Nodule #2 Nodule #2 Nodule #1 Nodule Characterization (Malignancy Risk Score) Nodule #1 Nodule #1 Nodule Characterization (Malignancy Risk Score)

Figure 1: Presentation of the global workflow of the CADe/CADx for lesion prediction, with CADe 3D convolutional neural network (CNN) detection and lung segmentation on the left, and with nodule segmentation and CADx on the right. At the end a results report is generated.

Detected Nodule

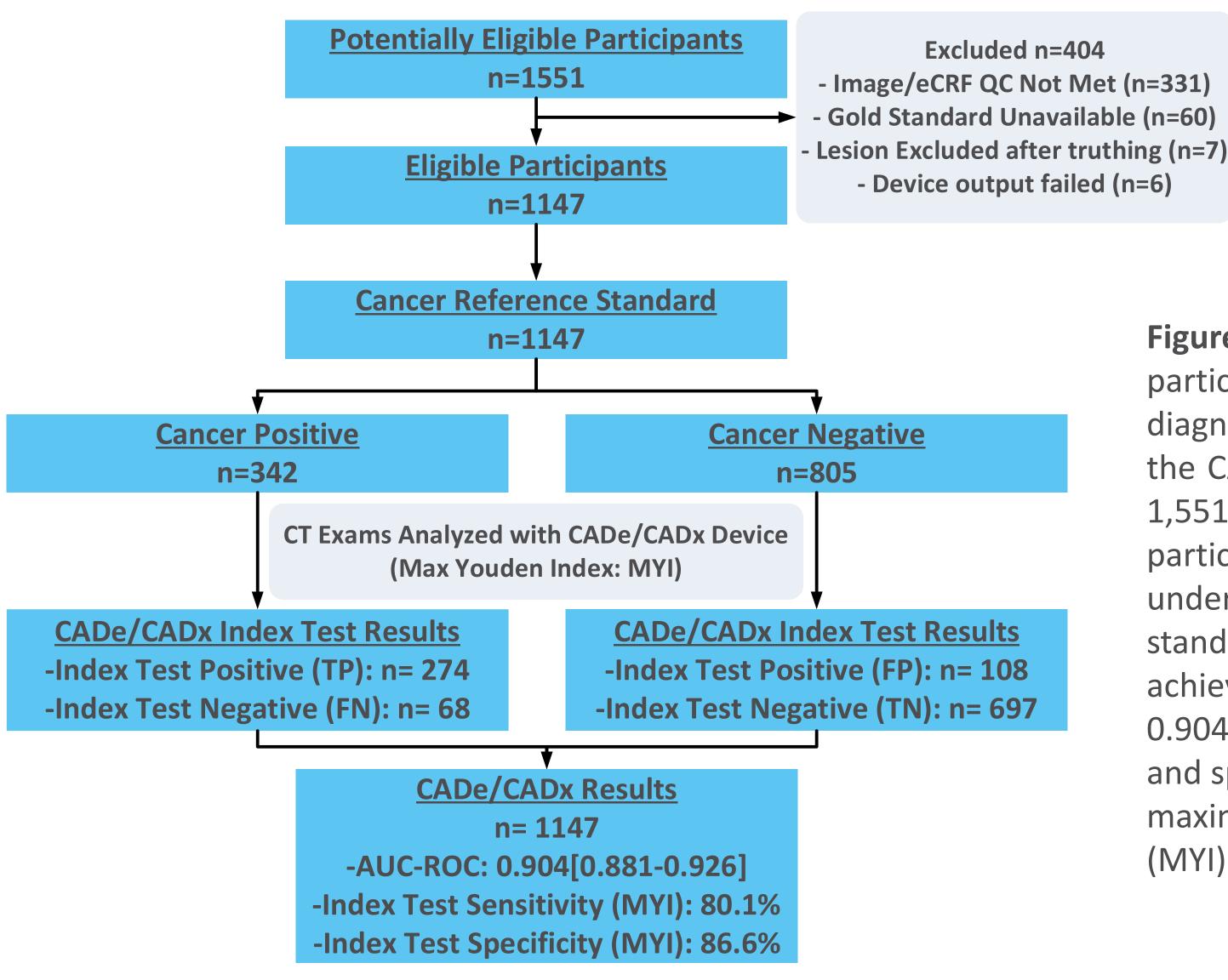


Figure 2: Flowchart of participant selection and diagnostic performance of the CADe/CADx algorithm. Of 1,551 potentially eligible participants, 1,147 underwent the reference standard, with the device achieving an AUC-ROC of 0.904, sensitivity of 80.1%, and specificity of 86.6% at the maximum Youden Index (MYI).

RESULTS

Value
• 1147
EU: 336, 29.29%USA: 811, 70.71%
Non-Cancer: 805, 70.18%Cancer: 342, 29.82%
 Entire Cohort: 64.94 ± 6.35 Non-Cancer: 63.95 ± 6.30 Cancer: 67.26 ± 5.83
 Non-Cancer: 6.37 ± 2.91 Cancer: 14.91 ± 5.66
 Stage I: 219 Stage II-IV: 56 Not Available: 67
 T1: 227 T2-4: 43 Not Available: 72
 NSCLC: 213 Other Cell Type (SCLC Included): 64 Not Available: 65

Lung Cancer Cell Type	AUC	Sensitivity (Cancer Recall Rate
NSCLC	0.908	97.2%
Other Lung Cancer Cell Types	0.853	89.1%

Table 2: AUC for correct lesion characterization and cancer recall rate (sensitivity) according to cancer cell type.

Class	Sub-Class	Sensitivity (Cancer Recall Rate)	False Positive Detections Per Exam
Cancer	Stage I	96.8%	0.80 FP/ Scan
Stage	Stage II-IV	98.2%	0.86 FP/Scan
Cancer	T1	96.5%	0.80 FP/Scan
T-Category	T2-4	100%	0.86 FP/SCan

Table 3: Cancer recall rate and false positive marks per examination for patients according to cancer stage and cancer t-category

Table 1: Study Participants.

CONCLUSIONS

The AI/ML-Based CADe/CADx showed high performance in detecting early lung cancer, high sensitivity for cancers of different stage, T-category and cell type, excellent cancer recall rate (>96.5%) on all cancer stages and t-categories. This CADe/CADx can assist in the accurate follow-up of suspicious lung nodules, optimizing the management of patients in lung cancer screening.

CONFLICTS OF INTEREST

Presenter R. OSAROGIAGBON: consultancies and advisory Median Technologies.