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Simple Summary: T cell receptor fusion constructs (TRuC-Ts) represent a promising next-
generation T cell therapy for solid tumors. To enhance their development, improved
patient selection is essential. A pilot study was conducted to evaluate the feasibility and
performance of a predictive model for treatment responses in mesothelioma patients,
leveraging radiomics and machine learning. Radiomics and delta-radiomics (∆radiomics)
features from CT scans were analyzed for reproducibility and informativeness, identifying
key features for training a random forest classifier. The model achieved an accuracy of
0.75–0.9 in predicting pleural tumor responses, supporting the design of future studies
involving 250–400 tumors. This study demonstrated the reproducibility and effectiveness of
radiomics/∆radiomics in relation to tumor localization, emphasizing the need for multiple
tumor models to create an integrated patient model. These findings provide a foundation
for combining tumor-specific models into a unified approach, improving patient selection
for TRuC-T therapy in mesothelioma patients.

Abstract: Background/Objectives: T cell receptor fusion constructs (TRuCs), a next genera-
tion engineered T cell therapy, hold great promise. To accelerate the clinical development
of these therapies, improving patient selection is a crucial pathway forward. Methods: We
retrospectively analyzed 23 mesothelioma patients (85 target tumors) treated in a phase
1/2 single arm clinical trial (NCT03907852). Five imaging sites were involved, the settings
for the evaluations were Blinded Independent Central Reviews (BICRs) with double reads.
The reproducibility of 3416 radiomics and delta-radiomics (∆radiomics) was assessed. The
univariate analysis evaluated correlations at the target tumor level with (1) tumor diameter
response; (2) tumor volume response, according to the Quantitative Imaging Biomarker Al-
liance; and (3) the mean standard uptake value (SUV) response, as defined by the positron
emission tomography response criteria in solid tumors (PERCISTs). A random forest model
predicted the response of the target pleural tumors. Results: Tumor anatomical distribution
was 55.3%, 17.6%, 14.1%, and 10.6% in the pleura, lymph nodes, peritoneum, and soft
tissues, respectively. Radiomics/∆radiomics reproducibility differed across tumor local-
izations. Radiomics were more reproducible than ∆radiomics. In the univariate analysis,
none of the radiomics/∆radiomics correlated with any response criteria. With an accuracy
ranging from 0.75 to 0.9, three radiomics/∆radiomics were able to predict the response
of target pleural tumors. Pivotal studies will require a sample size of 250 to 400 tumors.
Conclusions: The prediction of responding target pleural tumors can be achieved using a
machine learning-based radiomics/∆radiomics analysis. Tumor-specific reproducibility
and the average values indicated that using tumor models to create an effective patient
model would require combining several target tumor models.
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1. Introduction
T cell receptor fusion constructs (TRuCs) represent a next generation engineered T cell

platform endowed with the ability to target cancer antigens by leveraging the power of the
entire T cell receptor (TCR) in an HLA-independent manner [1]. Despite the remarkable
success of chimeric antigen receptors (CARs) in several hematological malignancies, multi-
ple studies have failed to replicate similar results among patients with solid tumors, which
has hindered their adoption in that setting [2,3]. While novel platforms such as TRuCs hold
great promise for the treatment of solid tumors, improving the benefit/risk ratio of these
therapies will require an improved upstream selection of patients to improve response
rates and minimize treatment-related toxicities.

Several criteria can be considered for evaluating therapeutic responses with imaging
techniques. The Response Evaluation Criteria for Solid Tumors (RECISTs) [4] are the most
commonly used criteria in oncology clinical trials, although some limitations have been
pointed out, particularly their ability to assess certain types of tumors and to evaluate
several unique tumor response subgroups outside of a response classification by RECIST,
such as a mixed response and an oligometastatic state [5,6]. An alternative method to
RECIST, which is based on the assessment of tumor diameter, is that of evaluating tumor
volume. Several groups have described the better sensitivity and reproducibility of tumor
volume measurements, and the Quantitative Imaging Biomarker Alliance (QIBA) [7] is
currently in the final phase of validation for changes in lung tumors volume assessed
through computed tomography (CT). On the other hand, positron emission tomography
(PET) imaging offers a different insight into therapeutic responses with the quantification of
a standard uptake value (SUV) to assess tumor metabolic changes, although it is not exempt
from toxicity such as cumulative radiation exposure [8]. So far, none of these different
paradigms of responses have clearly outperformed the others. Therefore, analyzing the
three of them would provide a wider, more precise, and perhaps complementary, tumor
response assessment.

Over the past decade, radiomics, a high-throughput imaging technique, has shown to
be effective in detecting and predicting treatment responses [9] as well as in gauging the
subtle changes in a tumor microenvironment not adequately addressed by conventional
imaging analyses [10].

Radiomics is an innovative approach to medical imaging that identifies patterns
that are invisible to the human eye but can be correlated with biological features and
clinical outcomes. Radiomics uses high-dimensional data from radiological images to
measure basic morphological features (e.g., tumor volume), and the distribution of voxel
intensity (e.g., derived from a histogram) to their joint distributions like the Grey Level
Co-occurrence Matrix (GLCM), but also a diversity of other indexes derived from the
grey-level run length matrix, the neighborhood grey-level difference matrix, or shape-
related features. Frequential analysis (e.g., wavelet, Gabor) is being increasingly used
nowadays [11]. Furthermore, while radiomics analyzes a static situation, delta-radiomics
(∆radiomics) provide an analysis of feature variation over time, i.e., extracting radiomic
features from the same region of interest in the same patient at different acquisition time
points [12].

The quantitative features extracted by radiomics can be used to predict tumor and
patient outcomes at a given time point, whereas ∆radiomics assesses feature variation
over different acquisition periods, such as before and after therapy [13]. In patients with
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mesothelioma, PET radiomic features have been shown to be associated with progression-
free survival and overall survival rates [14], whereas such an association has not been
identified by a standard CT imaging evaluation. To date, no ∆radiomics study has been
reported on patients with mesothelioma with any imaging method.

The objective of this pilot study was to evaluate whether radiomics or ∆radiomics
have the potential to predict the response of patients with mesothelioma in the context
of a clinical trial where patients were treated with gavocabtagene autoleucel (gavo-cel), a
TRuC T cell therapy targeting mesothelin. We evaluated the reproducibility of radiomics
and ∆radiomics and their correlation with the therapeutic responses of target lesions, as
well as the performance of a machine learning algorithm. These different outcomes were
used to provide a power analysis and to suggest a classification scheme.

2. Material and Methods
2.1. Study Data

This retrospective study included 23 patients with advanced mesothelin-expressing
mesothelioma treated in a phase 1/2, open label, single arm clinical trial (NCT03907852).
In this clinical trial, the patients were assessed by CT and PET imaging in a double read
Blinded Independent Central Review (BICR) setting. Imaging evaluations were derived
from the estimation of the overall response rate (ORR), which included a complete response
(CR) and a partial response (PR), according to RECIST v1.1 evaluation criteria. In addition
to the regular one-dimensional measurement stipulated in RECIST, volume measurements
were performed in all selected target tumors. The same imaging modality and image-
acquisition protocols (including the use of an intravenous contrast) were consistently used
at all time points for each patient to ensure uniformity in the comparison of lesions.

In addition, the PET data were analyzed according to PERCIST criteria [15] considering
the SUV of the hottest tumor at each time point.

2.2. Definition of the Response

At the target tumor level, three different definitions of responses were considered:
(1) stable (+25%, −30% change) or a decrease (−30% decrease) in target tumor diameters
(RECIST thresholds) with CT imaging; (2) at least a decrease in tumor volume as defined by
QIBA [16] with CT imaging; and (3) at least 30% of the hottest mean tumor SUV with PET
(PERCIST threshold). The subjective response of non-target lesions was not considered. For
each response definition, the ratio between the number of responding tumors and the total
number of tumors was computed as the response rate.

2.3. Radiomic Feature Evaluations

The original CT-based tumor volume evaluations were extracted from the iSee plat-
form (Median Technologies, Valbonne, France), then converted to Nifti format. Ra-
diomic features were calculated using LifeX (https://www.lifexsoft.org/ (accessed on
15 December 2024)) freeware [17].

Delta-radiomics were calculated as the net change between the baseline evaluations
and the first time point after baseline using the following formula [18]:

NetChange = FeatureTime point 1 − FeatureBaseline

For the reproducibility study, the relative change in response evaluations was calcu-
lated using the following formula:

RelativeChange = (FeatureTimepoint1 − FeatureBaseline)/FeatureBaseline

https://www.lifexsoft.org/
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2.4. Study Plan

Data from the original clinical trial were stratified according to patients’ disease and
type of tumor (Figure 1).
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Figure 1. Analysis workflow. From the original clinical trial, only mesothelioma patients were
considered. This study consisted of a data analysis (blue), radiomics and ∆radiomics analysis (green),
and model design (orange). The outcome was a pilot evaluation of the predictive performances of
target tumors responses.

2.4.1. Reproducibility of Tumor Measurements

Because the original trial featured a double reading setting (i.e., two independent
blinded reviewers) for each patient at each time point, a subset of target tumor measurement
could be paired. For each radiomic and ∆radiomic, the reproducibility was assessed by
measuring the paired difference of the measurements.

Previous studies reported that reproducibility can differ according to tumor localiza-
tion [19,20]. In our study, we hypothesized that reproducibility is homogeneous within
each tumor localization, notably between the responding and non-responding tumors.
We documented the variability per tumor localization and tested the equivalence of the
inter-localization reproducibility.

For each tumor localization, we compared the variability of each radiomic and
∆radiomic feature with those reported in the literature [21,22].

2.4.2. Univariate Analysis

We performed multiple comparisons of the mean radiomics values at baseline, week
4 (W4), W8, and W12 by tumor type. For each radiomic and ∆radiomic, we performed
univariate analyses by testing the equivalence of the mean values for the responding and
non-responding tumors (according to diameter, volume, and mean SUV Ground Truth
(GT)) at W4, W8, and W12.

2.4.3. Features Selection

We considered an original set of 3416 radiomics, from which feature selection was
required [23]. The selection strategy consisted of four steps: (1) a selection of the most
reproducible radiomics and ∆radiomics determined by a reproducibility (univariate) analy-
sis; (2) a removal of the redundant radiomics and ∆radiomics determined by a correlation
coefficient threshold; (3) a removal of radiomics and ∆radiomics after a process of recursive
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feature elimination; and (4) a final selection of the number of radiomic and ∆radiomic
features recommended to avoid data overfitting.

2.4.4. Model Design for Predicting Response to Treatment

A per-tumor model was trained in processing radiomics or ∆radiomics independently
for each main tumor localization: pleura, lymph nodes, peritoneum, and soft tissues.

2.4.5. Statistics

Statistics were processed using R CRAN software (V. 4.3.3) [24]. Statistical significance
levels were two-sided, with p-values < 0.05 and a 95% confidence interval (CI). Because of
the small sample size, non-parametric statistics were preferred.

Sunburst display was performed using the “SunburstR” package (V. 2.1.8).
Reproducibility:
We evaluated reproducibility of each radiomic and ∆radiomic feature using concor-

dance correlation coefficients (CCCs) as defined by Lin [25]. For several threshold values of
concordance, we reported the number of radiomic features higher than those thresholds.
The p-value associated with significant non-inferiority values over the thresholds was tested
with a bootstrapping CCC (“boot” and “boot.pval” packages) and adjusted for multiple
tests using the “Fuzzysim” package. Then, we compared inter-tissue reproducibility by
applying an F-Test for the equality of two variances [26] between the two most prevalent
types of tumors and by comparing their CCC CIs.

Univariate analysis:
We tested the non-equivalence of the values across tumor localizations for each

radiomics/∆radiomics using multiple Kruskal–Wallis tests with a false discovery rate
(FDR) correction (Fuzzysim package) [27].

Typical values for each type of tumor were provided with a CI using the “inter-
pretCI” package.

If non-equivalence of the radiomics values across tumor localizations was found, the
tumor localizations were studied separately.

We tested whether radiomics/∆radiomics were associated with the responding/non-
responding tumors using the Kruskal–Wallis test with an FDR correction (Fuzzysim package).

Cross-radiomics correlations were measured using the Spearman’s rank correlation
coefficient (a non-parametric counterpart to Pearson’s correlation). Redundant features
were deleted when correlation coefficients were >0.9.

Features selection:
Features reduction was processed by the following:

1. Selecting the reproducible radiomics/∆radiomics based on CCC values (as previ-
ously mentioned).

2. Selecting non-redundant radiomics/∆radiomics using a Spearman’s rank correlation
coefficient of 0.9. We relied on the clustering [28] package “heatmaply” and the
“fmradio” package for display and to perform data reduction after clustering.

3. Running a recursive feature elimination (RFE) based on the random forest algorithm.
4. Avoiding overfitting issues by establishing an acceptable maximal number of predic-

tors in line with the previous pilot studies [20]. The p-to-n ratio was held at 10.

Model design:
Binary responses were classified using the “caret” package in a cross-validation setting

with a random forest algorithm [29].
Proportional and corresponding CIs were calculated using the Clopper–Pearson exact

CI model from the “PropCI” package, while multiple comparisons of the proportions (e.g.,
tumor localization) were computed using the Marascuilo test [30].
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3. Results
3.1. Imaging Data

The distribution of patients by modality (CT and PET) and center (n = 5) at baseline is
depicted in Figure 2.
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Figure 2. Distribution of patients by modality and center at baseline. Five imaging centers participated
in the evaluation of patients treated in this study. CT and PET imaging were performed in 23 and
17 patients, respectively. A single imaging center performed only CT (Center #1).

The number of patients with CT images taken was 23, 22, 18, and 13 at baseline, W4,
W8, and W12, respectively, while there were 17, 17, 5, and 9 patients at baseline and the
subsequent time points, respectively, with PET images taken.

Figure 3 summarizes in sunburn the distribution of the CT and PET acquisition
parameters used by the five imaging centers.
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Figure 3. Distribution of acquisition parameters at baseline. (Left) CT acquisition parameters. From
inner to outer circle: manufacturer (Siemens or GE), models, Kvp (90, 120, 130), reconstruction
kernel (Standard, Br40, Soft), slice thickness (2.5; 5), and voxel size (0.6; 1.0). (Right) PET acquisition
parameters. From inner to outer circle: manufacturers (Siemens (Siemens Healthineers, Forchheim,
Germany), GE (GE Healthcare, Milwaukee, WI, US)), models, reconstruction kernel (AllPass, XYZ
Gauss (2.0, 3.5, 5.0)), slice thickness (2.0; 5.5), and voxel size (1.5; 6.9). Representativeness was deemed
significant for generalization.
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3.2. Anatomical Distribution of Tumors

The anatomical distribution of the target tumors at baseline in the 23 patients is
depicted in Figure 4.
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Figure 4. Distribution of target tumors in patients’ anatomy. Out of 85 tumors, 55.3% (n = 47) were
found in the pleura, 17.6% (n = 15) in the lymph nodes, 14.1% (n = 12) in the peritoneum, and 10.6%
(n = 9) in soft tissues. Two additional tumors, one adrenal tumor and one liver tumor, were classified
as “miscellaneous”.

The distribution of target tumors by patient is summarized in Table 1. Overall, 39.1%
(9/23) of patients had a single tumor localization.

Table 1. Distribution of target tumor localization by patient at baseline.

Tumor Localization Disease in Patients Numb. of Patient with a Unique Disease

Pleura 13 5

Lymph nodes 6 0

Peritoneum 8 3

Soft tissues 4 1

Miscellaneous 2 0
Rows report the main tumor localizations. Central column: number of patients for whom the corresponding tumor
localization was reported. Right column: number of patients for whom a single tumor localization was reported.

3.3. Criteria of Response—Corresponding Response Rate

For the main tumor localizations, the response rate at each time point is presented
by the tumor diameter (responding or stable disease), tumor volume, and mean SUV in
Tables 2–4, respectively.
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Table 2. Response rate derived from tumor diameter. Response rate is presented by percentages and
proportions. With a response rate of 100%, six subcategories (red) were unusable for analysis and
model training.

. Week 4 Week 8 Week 12

Pleura 83% (39/47) 95% (36/38) 97% (28/29)

Lymph nodes 80% (12/15) 91% (10/11) 100% (10/10)

Peritoneum 100% (12/12) 100% (8/8) 100% (2/2)

Soft tissues 100% (9/9) 100% (7/7) 71% (5/7)

All 87% (72/83) 95% (61/64) 94% (45/48)

Table 3. Response rate derived from tumor volume. Response rate is presented as percentages and
proportions. Because of its limited sample size, one subcategory was unusable for analysis and model
training (red).

. Week 4 Week 8 Week 12

Pleura 30% (14/47) 32% (12/38) 28% (8/29)

Lymph nodes 50% (7/15) 55% (6/11) 33% (3/10)

Peritoneum 33% (4/12) 25% (2/8) 50% (½)

Soft tissues 33% (3/9) 28% (2/7) 15% (1/7)

All 34% (28/83) 34% (22/64) 27% (13/48)

Table 4. Response rate of Mean SUV tumors responses. Response rate is presented as percentages and
proportions. Because of their limited sample size or inadequate response rate, some subcategories
were unusable for analysis and model training (red).

. Week 4 Week 8 Week 12

Pleura 20.5% (8/39) 58% (7/12) 36% (9/25)

Lymph nodes 64% (7/11) 100% (1/1) 14% (1/7)

Peritoneum 40% (4/10) 34% (2/6) 0% (0/1)

Soft tissues 0% (0/7) 0% (0/1) 0% (0/7)

All 67% (19/67) 50% (10/20) 25% (10/40)

3.4. Reproducibility

Double assessments were performed on 21 patients, for whom 67 pairs of tumors were
measured at baseline and at follow-ups. Tumors were distributed in the pleura (n = 35),
lymph nodes (n = 14), soft tissues (n = 12), and peritoneum (n = 5). Figure 5 shows the
number of radiomics and ∆radiomics with the highest CCC values by tumor localization.

For the pleura and lymph node tumors, which were the most prevalent tumors, 41.5%
of radiomic features had a significantly different variability (p < 0.05, F-Test) and the volume
CCCs were 0.36 (95% CI: 0.31; 0.41) and 0.64 (95% CI: 0.30; 0.84), respectively.

For the pleural and lymph node tumors, 39.1% of ∆radiomic features had a signifi-
cantly different variability (p < 0.05, F-Test) and the volume CCCs were 0.57 (95% CI:0.43;
0.68) and 0.18 (95% CI: −0.03; 0.38), respectively.
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Figure 5. Radiomic/∆radiomic features according to different CCCs threshold values. The number
of radiomics (a) and ∆radiomics (b) were calculated for different threshold values of CCC. Radiomics
reproducibility depended on tumor localization, with soft tissues (range: 238; 139) and lymph nodes
(range: 43; 0) being the most and least reproducible, respectively. The reproducibility of ∆radiomics
depended on tumor localization, with soft tissues (range: 101; 53) and lymph nodes (range: 3; 0)
being the most and least reproducible, respectively.

3.5. Univariate Analysis
3.5.1. Inter-Tumor Differences in Features Values

In total, 16.0% (95% CI: 15.0%; 17.0%) (n = 536) and 10.0% (95% CI: 9.0%; 11.0%)
(n = 338) of the radiomic and △radiomic features, respectively, have different values across
tumor type.

After correction for multiple testing (FDR, q = 0.05), these proportions were 2.7%
(95% CI: 2.1%; 3.2%) (n = 90) and 0% (n = 0), respectively.

At baseline, the tumor volumes were 62.3 (95% CI: 18.8; 105.8) cm3, 17.8 (95% CI: 5.9;
29.8) cm3, 34.5 (95% CI: 12.0; 57.1) cm3, and 20.2 (95% CI: 6.3; 34.0) cm3 in the pleura, lymph
node, peritoneum, and soft tissue tumors, respectively. We found no significant differences
between tumor volumes (p = 0.6).

3.5.2. Association Between Radiomics and Responses

For each radiomic/∆radiomic and the main tumor localizations, we tested whether
the responder/non-responder populations were significantly different. We tested three
paradigms of responses: diameter-based, volume-based, and PERCIST, and the re-
sults are presented in Tables 5–7, respectively. After FDR correction (q = 0.05), no
radiomics/∆radiomics were associated with responses in the diameter, volume, or PERCIST.

Table 5. Radiomics associated with diameter-based response of target tumor. Number of radiomic
features that had a significant difference of means between the responder/non-responder (Kruskal–
Wallis test). Some subcategories were not evaluated (NA) because of the limited response rate.

Radiomics ∆Radiomics
Organ

W4 W8 W12 W8 W12

Pleura 15 (N = 47) 7 (N = 38) 0 (N = 29) 81 (N = 38) 0 (N = 29)

Lymph nodes 76 (N = 15) 0 (N = 11) NA 0 (N = 11) NA

Peritoneum NA NA NA NA NA

Soft tissues NA NA 1 (N = 7) NA 0 (N = 7)
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Table 6. Radiomic features associated with volume-based response of target tumors. Number of
radiomic features that had a significant difference of means between the responder/non-responder
(Kruskal–Wallis test). Some subcategories were not evaluated (NA) because of the limited re-
sponse rate.

Radiomics ∆Radiomics
Organ

W4 W8 W12 W8 W12

Pleura 185 (N = 47) 584 (N = 38) 290 (N = 29) 505 (N = 38) 221 (N = 29)

Lymph nodes 99 (N = 15) 93 (N = 11) 53 (N = 10) 404 (N = 11) 164 (N = 10)

Peritoneum 122 (N = 12) 55 (N = 8) NA 0 (N = 8) 0 (N = 2)

Soft tissues 129 (N = 9) 2 (N = 7) 0, (N = 7) 2 (N = 7) 0 (N = 7)

Table 7. Radiomic features associated with PERCIST response of target tumors.

Radiomics ∆Radiomics
Organ

W4 W12 W4 W12

Pleura 532 (N = 39) 209 (N = 25) 73 (N = 39) 71 (N = 25)

Lymph nodes 282 (N = 11) 53 (N = 7) 48 (N = 11) NA

Peritoneum 89 (N = 10) NA 278 (N = 10) NA

Soft tissues NA NA NA NA

Number of radiomic features that had a significant difference of means between the
responder/non-responder (Kruskal–Wallis test). Some subcategories were not evaluated
(NA) because of the limited response rate.

3.6. Feature Selection and Model Design

To avoid data overfitting, the “10 samples per predictor” rule of thumb is commonly
used. Therefore, our model should not rely on more than approximately four, two, two,
and two predictors for classifying pleura (n= 47), lymph node (n = 15), peritoneum n = 12),
and soft tissue (n = 9) tumors, respectively. We selected a maximum of three predictors for
classifying the pleural tumors and two for the other tumors.

3.6.1. Preselection

Considering the reproducible radiomic/∆radiomic features (Figure 5a,b), we removed
those with an inter-correlation value >0.9 as shown in the sample cluster map in Figure 6.
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Figure 6. Sample cluster map of reproducible pleural tumors radiomics. Left: correlation matrix of
21 radiomics that were deemed reproducible (CCC > 0.8); some of them were highly inter-correlated
(yellow clusters). Right: after removing highly inter-correlated radiomics (correlation > 0.9), 8 repro-
ducible and non-redundant pleura radiomics were preselected.
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The number of radiomics/∆radiomics candidates are depicted in Figure 7a,b.
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Figure 7. Number of radiomic/∆radiomic candidates. We considered a different threshold of
CCC values ranging from 0.7 to 0.9 for radiomics (a) and 0.6 to 0.9 for ∆radiomics (b). For ra-
diomics and ∆radiomics, peritoneum and lymph node tumors were the most and least reproducible
tumors, respectively.

3.6.2. Feature Selection/Models Performances

The responses of the target pleural tumors were predicted based on three radiomics
(three wavelets) measured at baseline. The accuracy was 0.9 (95% CI: 0.6; 0.95), the area
under the curve (AUC) = 0.88, at W8, and the accuracy was 0.75 (95% CI: 0.34; 0.96), with
an AUC = 0.74, at W12.

Peritoneum tumors were predicted based on two radiomics with an accuracy of 0.67
(95% CI: 0.1; 0.99) and an AUC = 0.61.

The other subclasses (of tumor type/visit) could not be evaluated because of the
cross-correlation setting that split the dataset, leaving the test set with missing responder
or non-responder data.

The responses of the pleural tumors were predicted based on three ∆radiomics
(one wavelet and two from density percentiles). The accuracy was 0.71 (95% CI: 0.3; 0.9),
with an AUC = 0.74, at W8, and 0.8 (95% CI: 0.3; 0.99), with an AUC = 0.68, at W12. The other
subclasses (of tumor type/ visit) could not be tested due to limitations in cross-validation.

The predictions of the SUV responses of the pleura tumors were based on two ra-
diomics (2 wavelets); the accuracy was 0.71 (95% CI: 0.3; 09), with an AUC = 0.68 at W4
and 0.75 (95% CI: 0.2; 0.9), with an AUC = 0.7 at W12. Based on two ∆radiomics (two
from density percentiles), the prediction had an accuracy of 0.75 (95% CI: 0.2; 0.9) and an
AUC = 0.75 at W12.

3.7. Power Analysis

Considering the two most reproducible and informative radiomics and ∆radiomics
drawn from the feature selection, we estimated the sample size needed to reach significancy
in setting shrinkage value at 0.9.

Considering the volume-derived responses and three radiomics predictors at W8, with
an AUC = 0.8 and a 40% response rate, the minimum sample size would be 369 patients
with 148 responses. At W12, with an AUC = 0.7 and a 27% response rate, the minimum
sample size would be 303 patients with 82 responses. When considering two ∆radiomics
predictors with an AUC = 0.7 and a 30% response rate, the minimum sample size would be
323 patients with 97 responses at W8. At W12, with an AUC = 0.8 and a 30% response rate,
the minimum sample size would be 323 patients with 97 responses.

Regarding the SUV-derived responses, when considering two radiomics predictors,
at W4, with an AUC = 0.8 and a 20% response rate, the minimum sample size would be
246 patients with 50 responses. At W12, with an AUC = 0.7 and a 40% response rate, the
minimum sample size would be 369 patients with 148 responses. Using two ∆radiomics
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predictors (CCC = 0.6), with an AUC = 0.75 and a 36% response rate, the minimum sample
size would be 355 patients with 128 responses at W12.

4. Discussion
4.1. Staging, Distribution, and Response Biomarkers

This pilot study documented the anatomical distribution of tumors in patients with
mesothelioma and showed the imbalance between the responding/non-responding tu-
mors across location and imaging biomarkers, including longest diameter, volume, and
mean SUV.

There was a strong imbalance between the responding/non-responding tumors, which
significantly limited the value of a diameter-derived imaging assessment paradigm in favor
of volume-derived response criteria using CT as the imaging modality.

Importantly, more than half of the target tumors evaluated in patients with mesothe-
lioma were pleural-based, with the lymph nodes, peritoneum, and soft tissues being the
second most frequent sites of disease involvement, in line with the reported patterns of
metastasis in patients with malignant pleural mesothelioma described by Collins et al. [31].
Collins et al. also concluded that metastatic spread did not appear to have prognostic
implications for overall survival. In our study, brain lesions were excluded, and bone
lesions were not selected as a “target” in compliance with RECISTv1.1 guideline recommen-
dations. Additionally, a subset of patients had pleural tumors, but they were not selected
as a target for a radiomics analysis, partially due to the RECIST selection criteria requiring
a “measurable” supra-centimetric lesion.

Radiomics Robustness
In line with previous studies [32,33], we found that the average radiomics/∆radiomics

values varied depending on tumor localization. Therefore, from the standpoint of the
average value and reproducibility, different sets of radiomics should be considered for
tumor applications according to their localization. Consequently, the models aimed at
predicting patient responses should integrate a tumor-specific classification and, for the
final system to be practical and widely applicable, it must transition from a tumor-centered
approach to a patient-centered one. This would require the implementation of hierarchical
or multi-level modeling to ensure the system can address the broader complexities of
patient care.

For a predictive model, a higher number of reproducible radiomics/∆radiomics al-
lows more flexibility for feature selection, and thus for training. However, in this study,
a small proportion of radiomics/∆radiomics were deemed reproducible and the num-
ber of reproducible tumor radiomics/∆radiomics were significantly different between
the different anatomic locations, with soft tissue and lymph node tumors featuring the
highest and lowest number of reproducible radiomics, respectively. Previous studies have
shown that the variability of segmentation is a significant factor impacting radiomics repro-
ducibility [34]. Figure 8 illustrates how the complexity of tumor segmentation can impact
radiomics variability.

In contrast to Zhao et al. [21], we found that the volume of pleural tumors had a low
CCC value, which might be explained by several factors. First, while the data evaluated by
Zhao et al. were lung data, the pleural tumors data of this pilot study were probably more
complex to segment. Second, the dataset average volume was largely different between the
two studies (around 22.0 cm3 and 62.3 cm3 for the lung data and this study, respectively).
Even if a lower relative error can be expected for the larger segmentations, these are more
likely to be adjacent to other anatomical structures and, therefore, are prone to segmentation
errors. In addition, it is worth noting that pleural mesothelioma involvement causes a
particular pattern of growth and spread, with circumferential pleural spread being more
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prevalent than the typical nodular growth observed in most solid tumors. Consequently, the
identification of target lesions with a nodular morphology can be challenging in patients
with mesothelioma and adds a layer of variability between two independent blinded
observers (Figure 8). For this reason, modified RECIST criteria adapted to the evaluation of
pleural mesothelioma have been developed [35].Cancers 2025, 17, x FOR PEER REVIEW 13 of 18 
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Figure 8. Sample variability of segmentation and radiomics values. One pleura and one soft tissue
tumor were segmented by Reader 1 and Reader 2. The volume, the joint entropy, and the sum of
variance (computed from GLCM) were derived from the segmentations. The inter-reader variability
of the segmentations leads to a variability in volume of 20% and 30%, in joint entropy of 16% and 7%,
and in sum of variance of 41% and 56%, respectively, the pleura and the soft tissue tumors.

4.2. Radiomics Correlations

While no radiomics or ∆radiomics were associated with tumor responses in the
univariate analyses, a multivariate classification allowed us to predict the responses of
pleural tumors.

Since a comprehensive evaluation of our predictive system was applied to document
the distribution of responses for each tumor location (N = 4) and time point (N = 3), the
response criteria would ideally feature an acceptable sample size and balance between
the responder/non-responder for each subclass. We considered three different criteria for
tumor responses, two for CT (tumor diameter and volume) and one for PET (mean SUV).
In agreement with Cai et al. [36], we observed that tumor diameter had a different sensi-
tivity/specificity than the volume measurements in CT. The responses derived from the
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CT diameter measurements were deemed suboptimal for a prediction assessment because
of the strong imbalance between the responding/non-responding tumors. Therefore, we
focused on the response in volume with CT and on the mean SUV with PET.

In our univariate analysis, some of the 3416 radiomics were correlated to the responses
before an FDR correction. After an FDR correction, none of the radiomics or ∆radiomics
correlated to any response criteria, as previously reported by Chalkidou et al. [37], thereby
supporting the use of multivariate models and machine learning.

Our feature selection scheme aimed to select a maximum of two to three radiomics/
∆radiomics per tumor localization to avoid data overfitting in a cross-validation setting.
Significant classification performances were obtained only for the pleural tumors with
an accuracy ranging from 0.9 to 0.75, which could power future studies involving a data
sample size of 250 to 400 target tumors.

4.3. Radiomics and Study Limitations

Several study limitations are worth discussing. First, due to the retrospective nature of
our study, we had to adapt the measurements from the original trial (NCT03907852), which
prevented us from relying on more specific response criteria [35]. Therefore, we applied
the standard RECIST 1.1 criteria, and in particular, the volume-derived response criteria, to
all mesothelioma tumors regardless of their anatomical location, even though the volume
was originally qualified for advanced lung disease. Although QIBA’s profile [16] clearly
highlights the limitations of extending the use of volumetry to other diseases, we adopted
these criteria because of the high level of qualification.

Second, we grouped all the tumors into four main localizations. The tumors were
initially labeled by each independent reader, then grouping was subjectively performed on
a radiologic basis by a single third-party radiologist. Aware that this process was prone
to inter-group and intra-group errors [38], we attempted to balance the limited sample
size and our hypothesis that each tumor localization had a different average value and
reproducibility.

Third, avoiding data overfitting was a challenge due to the small sample size of some
subclasses. No well-established statistics are currently available for sizing the maximum
number of predictors. However, since the univariate analysis showed no correlation, the
minimum number of predictors (2–3) was selected to minimize the risk of data overfitting.

Fourth, we were uncertain about the complexity and potential non-linear relationships
between the features and target variables. Considering the small sample size, we aimed
to minimize the risk of overfitting and the impact of noise on the data. Therefore, we
chose Random Forest as a robust and flexible classifier. Although we considered testing
other classification methods, comparing algorithm performance was beyond the scope of
our study. Fifth, one aspect that was not addressed in this study is how to translate the
models designed at the target tumor level into a patient predictive system. We analyzed
the correlation and prediction of target tumor responses using the radiomics/∆radiomics
values at baseline since these measurements can only be obtained for measurable tumors
(target lesions). However, the real value of a predictive system lies in its ability to assist
with patient management, which brings up the issue of response criteria. The response
evaluation by the RECIST criteria combines the assessment of target, non-target, and new
tumors. However, our analysis was performed only on target lesions and, therefore, such
analysis would require the use of validated radiomics-derived, target-lesion-only-based
response criteria, which is yet to be developed. Such response criteria will need to address
the cases where the responding patients have a dissociated response within a specific tumor
site and, even more challenging, the cases where dissociated responses occur at different
tumor sites.
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Lastly, a proper radiomics study is expected to explain the outcome from the imaging
and clinical point of view [39]. We did not address this point because it was considered out
of the scope of a pilot study [40] and it could have led to premature conclusions.

4.4. Perspectives

The upcoming pivotal study is anticipated to validate the predictive performance of
our pilot study. However, the radiomics-only approach presented here is just a foundational
step that could be significantly enhanced by incorporating additional imaging biomarkers,
such as nutritional biomarkers (e.g., L3—Skeletal Muscle Index) [41], as well as non-imaging
biomarkers (e.g., Krebs von den Lungen-6 (KL-6)) [42]. Furthermore, advancements in
AI models and the integration of complementary technologies could further elevate the
system’s capabilities [43].

Given the ability of radiomics to predict the therapeutic response of target lesions,
we could also start considering evaluating the potential of radiomics for clinical trial
monitoring, thereby improving the current response criteria used for mesothelioma.

5. Conclusions
This study supports the use of radiomics/∆radiomics and machine learning for re-

sponse prediction in patients with malignant mesothelioma. Future studies will have
to be powered by assessing reproducibility as well as addressing the different response
paradigms and their limitations. As the evidence shows that technologies can be efficient,
additional resources and imaging data should be implemented in the evaluation of pa-
tients with mesothelioma. We believe that radiomics/∆radiomics and machine learning
provide the means to address response prediction in patients with mesothelioma, which
thus far has not been adequately addressed. In addition to the predictive model described
herein, we propose that the analysis of responses per tumor location could also aid in better
understanding drug efficacy in the future.
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Abbreviations

AUC Area Under the Curve
BICR Blinded Independent Central Review
CCC Concordance Correlation Coefficients
CT Computed tomography
FDR False Discovery Rate
GLCM Grey Level Co-occurrence Matrix
GT Ground Truth
PERCIST Positron Emission Tomography Response Criteria in Solid Tumor
PET Positron Emission Tomograph
ORR Overall Response Rate
QIBA Quantitative Imaging Biomarker Alliance
RECIST Response Evaluation Criteria in Solid Tumors
SUV Standard Uptake Value
TRuC-T T cell receptor fusion construct
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