919P ARTIFICIAL INTELLIGENCE SUPPORTING LUNG CANCER SCREENING: COMPUTER AIDED DIAGNOSIS OF LUNG LESIONS
DRIVEN BY MORPHOLOGICAL FEATURE EXTRACTION

Authors: Francesco GROSSI?, Van-Khoa LE?, Pierre BAUDOT?, Charles VOYTON?, Danny FRANCIS?, Elias MUNOZ?, Benoit HUET?

[1] Division of Medical Oncology, University of Insubria, Varese, Italy, [2] Median Technologies, Valbonne, France.

BACKGROUND RESULTS

CONCLUSIONS

Lung Cancer is among the most common cancer types, and is the leading When using a size threshold of 3mm maximal axial diameter the overall lesion level performance Here, we present the evaluation of an Al/ML
cause of cancer deaths worldwide. Despite the expansion of the eligible of the combined detection and characterization reached an AUC of 0.964 with 92.1% sensitivity tech based computer aided detection and
US population after the updated USPSTF guidelines in 2021, lung cancer and 95.9% specificity, with a mean AUC 0.965+/-0.011 stdev and a 95% Cl of [0.941 0.985] using characterization (CADe/CADx) with high
screening penetration remains low with average inclusion rates in 2020 5000 bootstrap samples. Lesion detection performance was 90.0% sensitivity with an average of performances and low false positives. The
of 6.5%. These low inclusion rates are caused by a number of barriers 9 .8 false positive detections per scan. Results of the clinical feature importance shows that the top features of importance for the models were
imposed by patients and providers alike. Although slow in their 40 features accounting for the models prediction were composed of 27 deep Convolutional Neural largely based off of deep Convolutional
implementation into the lung screening routine, Artificial Intelligence (Al) Network (CNN) predictions, 7 nodule shape features (Maximum 2D axial diameter, maximum 2D Neural Network predictions and were only
tech-based diagnostics stand to help remove these barriers by providing coronal diameter, maximum 2D sagittal diameter, spiculation, margins, VoxelVolume and volume) partially driven by more classical

more accurate image analysis and patient management. and HU texture radiomics (SizeZoneNonUniformity, TotalEnergy, DependanceNonUniformity). morphological feature extractions.
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Figure 3: .Importance of the 30 first highest predictive features-variables (out of the 40 out of a total of 152 features) using

Figure 1: Presentation of the global workflow of the CADe/Cadx for lesion prediction, with CADe 3D CNN detection XGBoost. The 40 best features are composed of: 13 {out of 15) 3D-CNN predictions, 14 out of 15) 2D-CNN predictions, 5

on the left, and with CADx on the right. The CADx ensembles 3 different predictors: 3D and 2D CNN models [1,3], (out of 94) texture radiomics quantifying attenuation, 4 (out of 17) shape radiomics all quantifying nodule size and volume
and Radiomics and 3D-morphomics features [2,4] (2 diameters and 2 volumes), and 3 (out of 11) 3D-morphomics quantifying margins, spiculations.
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