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Abstract

Information cohomology is a branch of topological data analysis that allows us to quantify directly statistical dependencies and independences in a given dataset. Theorems
establish Shannon entropy as a first cohomology class and mutual information as coboundaries on finite probability space endowed with a random variable chain complex
structure. We present some simplicial subcase applications to supervised and unsupervised learning in different contexts: transcriptomic and digits and medical CT image

classification.
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Principles and Theory

We consider random variables as partitions of atomic probabilities and the associated poset given by their lattice. The basic cohomology is settled by the Hochschild coboundary, with a left action
corresponding to information conditioning. The first degree cocycle is the entropy chain rule, allowing to derive the functional equation of information and hence to characterize entropy uniquely as
the first group of the cohomology. (minus) Odd multivariate mutual informations (MI, 12k+1) appears as even degrees coboundary, and the introduction of a second trivial or symmetric action
coboundary gives even Ml (I2k) in the odd degrees. Mutual statistical independence is equivalent to the vanishing of all k-Ml (1k=0), leading to the conclusion that the |, define refined measures of
statistical dependencies and that the cohomology quantifies the obstructions to statistical factorization. We develop the computationally tractable subcase of on the simplicial (Boolean) sub-lattice,
represented by entropy Hk and information Ik landscapes. The H, and I, have linearly idenpendent gradients in an open dense set of the probability simplex. (see [1,2,3,4] for theorem:s).
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The marginal I1 component defines a self-internal energy functional Uk, and Ik k>1 define the contribution of the k-body interactions to the free energy functional G given by the KL divergence
between marginals and the joined variable (the "total correlation"). The set of information paths in simplicial structure is in bijection with the symmetric group.
Supervised learning: Let X, be the label variable to learn, then supervised learning of X, is defined by the sublattice, information landscapes and complexes for which all chains contain X, given by
the 2"' H,, I, which (sub)gradients are independent in an open dense subsets of the probabilty subsimplex Ay /1 (subsimplex obtained by conditionning on the parametters Ey,). Then, the maximal
depth of a Deep Neural Net acheiving the classification given the data is the dimension of the information simplicial complex (holds for supervised and unsupervised).
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Conclusions

1. New methods for topological data analysis intrinsicaly based on statistics. Encouraging results on data to be confirmed on larger training set and comparted to deep networks.

2. Generalization and formalisation of Deep Neural Networks with algebraic topology. New cohomological formalization of supervised learning as a subcase of supervised learning, for which the
backpropagation (or natural gradient) is implemented by the information chain rule and is forward (cohomology).

3. Computationaly expensive O(2") or C(k,n) in partial exploration: current development of parrallell and GPU processing of the programs.
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