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Abstract

 Supervised 

Informa�on cohomology is a branch of topological data analysis that allows us to quan�fy directly sta�s�cal dependencies and independences in a given dataset. Theorems 
establish Shannon entropy as a first cohomology class and mutual informa�on as coboundaries on finite probability space endowed with a random variable chain complex 
structure. We present some simplicial subcase applica�ons to supervised and unsupervised learning in different contexts: transcriptomic and digits and medical CT image 
classifica�on.

We consider random variables as par��ons of atomic probabili�es and the associated poset given by their la�ce. The basic cohomology is se�led by the Hochschild coboundary, with a le� ac�on 

corresponding to informa�on condi�oning. The first degree cocycle is the entropy chain rule, allowing to derive the func�onal equa�on of informa�on and hence to characterize entropy uniquely as 

the first group of the cohomology. (minus) Odd mul�variate mutual informa�ons (MI, I2k+1) appears as even degrees coboundary, and the introduc�on of a second trivial or symmetric ac�on 

coboundary gives even MI (I2k) in the odd degrees. Mutual sta�s�cal independence is equivalent to the vanishing of all k-MI (Ik=0), leading to the conclusion that the Ik define refined measures of 

sta�s�cal dependencies and that the cohomology quan�fies the obstruc�ons to sta�s�cal factoriza�on.  We develop the computa�onally tractable subcase of on the simplicial (Boolean) sub-la�ce, 

represented by entropy Hk and informa�on Ik landscapes. The Hk and Ik have linearly idenpendent gradients in an open dense set of the probability simplex. (see [1,2,3,4] for theorems). 

The marginal I1 component defines a self-internal energy func�onal Uk, and  Ik,k>1 define the contribu�on of the k-body interac�ons to the free energy func�onal Gk given by the KL divergence 

between marginals and the joined variable (the "total correla�on"). The set of informa�on paths in simplicial structure is in bijec�on with the symmetric group.

Supervised learning: Let X1 be the label variable to learn, then supervised learning of X1 is defined by the subla�ce, informa�on landscapes and complexes for which all chains contain X1, given by 

the 2n-1 Hk, Ik  which (sub)gradients are independent in an open dense subsets of the probabilty subsimplex �X/x1 (subsimplex obtained by condi�onning on the parame�ers EX1). Then, the maximal 

depth of a Deep Neural Net acheiving the classifica�on given the data is the dimension of the informa�on simplicial complex (holds for supervised and unsupervised).    
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1. New methods for topological data analysis intrinsicaly based on sta�s�cs. Encouraging results on data to be confirmed on larger training set and comparted to deep networks.

2. Generaliza�on and formalisa�on of Deep Neural Networks with algebraic topology. New cohomological formaliza�on of supervised learning as a subcase of supervised learning, for which the 

backpropaga�on (or natural gradient) is implemented by the informa�on chain rule and is forward (cohomology).

3. Computa�onaly expensive O(2n) or C(k,n) in par�al explora�on: current development of parrallell and GPU processing of the programs.  

Conclusions
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Digits Transpose : 60 dimensions-images

 image: 28*28 pixels

=> 764 points
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1st Max I3 : (3,3,3)
2nd Max I3 : (0,0,0)

1st Max I4 : (3,3,3,3)
2nd Max I4 : (1,1,1,1)

1st Min I3 : (4,0,1)
2nd Min I3 : (0,2,3)
3rd  Min I3 : (6,0,4)
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Digits Transpose : 30 images of the same digit + 1 label

 => 31 dimensions (exp: up to 5 dim in 30): 10 �mes

 image 28*28 pixels  => 764 points
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