

Imaging fundamentals

Imaging in oncology clinical trials

Overview

The drug development process

Stage	Goal
1. Basic research	Target identification
2. Discovery/lead optimization	Identify suitable molecule or prototype to interact with target
3. Preclinical studies	Mechanism of action, proof of principle in animals
4. Phase I	Dosage, pharmacodynamics, safety, proof of concept
5. Phase II	Efficacy and safety
6. Phase III	Efficacy and safety; regulatory submission
7. Phase IV	Real world use, additional safety if required by regulatory agence

Common terms and acronyms

- **Randomized:** each patient's treatment assignment is left to chance.
- **Controlled:** the treatment group receiving the drug is compared to a group given either an active control (established drug; also known as an active comparator) or a placebo (sugar pill; negative control).
- Double-blinded: researchers, patients, and imaging readers are unaware of the patients' treatment group throughout the evaluation period.
- **Open-label:** a study in which there is no blinding; participants and researchers are aware of the treatment being given, and there is no placebo group.

Clinical trial phases: Overview of the Clinical Trials Process

- IND: Investigational New Drug.
- NDA: New Drug Application.

Oncology trial design

The primary endpoint in most oncology trials is patient survival:

- Overall Survival (OS): clinical endpoint; considered gold standard; not always practical due to high patient numbers and required time.
- Progression-free Survival (PFS): measures time from treatment initiation to beginning of disease progression; most commonly used oncology endpoint.

Another important oncology trial endpoint:

• Objective Response Rate (ORR): proportion of patients with a reduction in tumor burden by a predefined amount.

Disease progression is defined according to the chosen response criteria:

• The most widely used response criteria for solid tumors is RECIST1.1, which assesses tumor size by CT or MRI.

- Tumor growth = disease progression;
 Tumor shrinkage = response to treatment
- In RECIST1.1, tumor response is categorized according to defined parameters:
 - CR = complete response;
 PR = partial response;
 SD = stable disease;
 - PD = progressive disease
- Immunotherapies have their own unique response criteria: iRECIST, irRC and irRECIST.
- Immunotherapies typically exhibit a delayed response and tumors can enlarge prior to disease stabilization.
- Tumor growth does not automatically define disease progression; imaging is performed again after 12 weeks to test for response.

	Preclinical testing		Phase 1	Phase 2	Phase 3	
Subjects	Laboratory and animal studies	FILE IND	20–100 Healthy volunteers	100–300 Patient volunteers	1,000–3,000 Patient volunteers	FILE
Purpose	Assess safety & biological activity		Safety & dosage	Safety, dosing & efficacy	Safety, verify effectiveness & side effects	
Avg Time	1 - 6 Years		1.8 Years	2.1 Years	2.5 Years	
Probability of moving to next phase			62.8% of INDs	24.6% of INDs	40.1% of INDs	
	10,000	250		50	5	1
				wv	w.fdareview.org/03 drug developme	ent.php

www.tdareview.org/03_drug_development.php www.bio.org - Clinical Development Success Rates 2006 - 2015

www.mediantechnologies.com

Clinical trials attempt to answer the following questions:

- Is the drug safe?
- What happens to the drug in the body?
- What happens to the body when the drug is taken
- Is the drug clinically effective?
- How should the drug best be administered?

Clinical	trial	phases	(continued)
----------	-------	--------	-------------

Preclinical & FIM	 Preclinical testing involves animal and laboratory studies. Is the drug effective in living organisms? Is the compound biologically active? 	 At the conclusion of preclinical testing, an investigational new drug application (IND) must be filed with the regulatory agency then the First in Man (FIM) Studies.
Phase I ~1–2 Years	 Phase I evaluates drug safety and a safe dosing range: clinical efficacy is generally limited to establishing proof of principle. Sometimes, Phase I is divided into Ia and Ib. Phase Ia studies are usually performed on healthy volunteers and phase Ib is on patients with cancer. Tumor size can also be used as a safety parameter, as any new drug that results in tumor growth will not proceed through the clinical trial process. Pharmacokinetic (PK) and pharmacodynamic (PD) data is collected. PK and PD: The evaluation and quantification of what the body does to a drug over time, tested at many doses (absorption, distribution, metabolism, and elimination). 	 Imaging in Phase I can be used to: Evaluate extent of cancer using CT or MRI. Identify patient populations most likely to respond to treatment. Assess PK using PET. Test drug safety: kidney or liver damage using MRI. Make go/no go decisions on whether or not to proceed in clinical testing. Test novel imaging endpoints.
Phase II ~2 Years	 Drug is given to a larger group of patients who have cancer. Does the drug work in the disease population? At what dose is the drug effective? Drug is tested at several doses using placebo controlled or active comparator design to determine the optimal dose to carry into Phase III studies. 	 Imaging studies in Phase II can be used to: Detect early changes to pathophysiology as it relates to efficacy or safety. Stratify patients into treatment groups. Identify patient populations most likely to respond. Evaluate imaging biomarkers. Make go/no go decisions regarding move to Phase III.
Phase III ~3-5 Years	 Confirm efficacy results in a larger population: determine clinically meaningful drug benefit and requires the greatest amount of time, financial resources, strategic planning. Is the drug working and safe? Identify adverse events: establishes a benefit-to-risk ratio (BRR) for the patient. BRR influences the decision to approve the drug for first-line, second-line, or salvage therapy. BRR must be comparable or better than current therapies in order to gain first-line treatment status. 	 After Phase III testing, a new drug application (NDA) is filed with the regulatory agency. The NDA contains all data from preclinical and Phase I-III studies; an NDA can be thousands of pages long and may require as long as 1-2 years to be reviewed by the regulatory agency. Imaging in Phase III is used to determine disease progression as an indicator of clinical benefit. This typically includes measuring changes in tumor size after treatment (compared to baseline) using CT or MRI for solid tumors; can also include measuring glucose metabolism by PET/CT (e.g., for lymphoma). The way in which disease progression is measured is determined by response criteria, which are specific to type of tumor and/or drug class.
Phase IV	 After review and approval of the NDA, Phase IV postmarketing studies are initiated; also called post-marketing surveillance. Phase IV studies are conducted after the drug has already been approved by the regulatory agency to confirm safety and efficacy with long-term use. 	 Collects additional information for patients and healthcare providers that was not generated in Phase III trials. Phase IV studies must use current prescribing instructions. Used to study specific populations, monitor a longterm safety parameter, investigate a new efficacy endpoint, or explore new indications. Regulatory agencies can make approval contingent upon Phase IV studies that address specific safety concerns. Phase IV imaging studies are used to further assess or confirm efficacy and safety.

Europe Median Technologies SA Les Deux Arcs B, 1800 route des Crêtes 06560 Valbonne, France

